A System Exhibiting Toroidal Order
نویسندگان
چکیده
This paper treats the dipolar interactions of a two-dimensional system of discs upon which a triangle of spins is mounted. We obtain the leading term of the multipole expansion of the interaction energy of discs on which is mounted a regular n-gon of spins. A definition of the toroidal magnetic moment Ti of the ith plaquette is proposed such that the magnetostatic interaction between plaquettes i and j is proportional to TiTj. The system for n=3 is shown to undergo a sequence of interesting phase transitions as the temperature is lowered. We are mainly concerned with the “solid” phase in which bond-orientational order but not positional order is long ranged. As the temperature is lowered in the solid phase, the first phase transition involving the orientation or toroidal magnetism of the discs is into a “gauge toroid” phase in which the product of a magnetic toroidal parameter and an orientation variable (for the discs) orders but due to a local gauge symmetry these variables themselves do not individually order. Finally, in the lowest temperature phase the gauge symmetry is broken and toroidal order and orientational order both develop. In the “gauge toroidal” phase time-reversal invariance is broken and in the lowest temperature phase inversion symmetry is also broken. In none of these phases is there long-range order in any Fourier component of the average spin. Symmetry considerations are used to construct the magnetoelectric free energy and thereby to deduce which coefficients of the linear magnetoelectric tensor are allowed to be nonzero. In none of the phases does symmetry permit a spontaneous polarization. Disciplines Physical Sciences and Mathematics | Physics Comments Suggested Citation: Harris, A.B. (2010). "A system exhibiting toroidal order." Physical Review B. 82, 184401. © The American Physical Society http://dx.doi.org/10.1103/PhysRevB.82.184401 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/physics_papers/36 A system exhibiting toroidal order A. B. Harris Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Received 22 July 2010; revised manuscript received 29 August 2010; published 1 November 2010 This paper treats the dipolar interactions of a two-dimensional system of discs upon which a triangle of spins is mounted. We obtain the leading term of the multipole expansion of the interaction energy of discs on which is mounted a regular n-gon of spins. A definition of the toroidal magnetic moment Ti of the ith plaquette is proposed such that the magnetostatic interaction between plaquettes i and j is proportional to TiTj. The system for n=3 is shown to undergo a sequence of interesting phase transitions as the temperature is lowered. We are mainly concerned with the “solid” phase in which bond-orientational order but not positional order is long ranged. As the temperature is lowered in the solid phase, the first phase transition involving the orientation or toroidal magnetism of the discs is into a “gauge toroid” phase in which the product of a magnetic toroidal parameter and an orientation variable for the discs orders but due to a local gauge symmetry these variables themselves do not individually order. Finally, in the lowest temperature phase the gauge symmetry is broken and toroidal order and orientational order both develop. In the “gauge toroidal” phase time-reversal invariance is broken and in the lowest temperature phase inversion symmetry is also broken. In none of these phases is there long-range order in any Fourier component of the average spin. Symmetry considerations are used to construct the magnetoelectric free energy and thereby to deduce which coefficients of the linear magnetoelectric tensor are allowed to be nonzero. In none of the phases does symmetry permit a spontaneous polarization. DOI: 10.1103/PhysRevB.82.184401 PACS number s : 75.25.Dk, 75.10. b, 75.50.Ee, 77.80. e
منابع مشابه
Application of Multi-objective Optimization for Optimization of Half-toroidal Continuously Variable Transmission
Among different goals defined in vehicle design process, fuel consumption (FC) is one of the most important objectives, which significantly has taken into account lately, both by the customers and vehicle manufacturers. One of the significant parameters which impacts the vehicle FC is the efficiency of vehicle's power train. In this paper, a half-toroidal continuously variable transmission (CVT...
متن کاملModelling and Optimization of Toroidal Continuously Variable Transmission in ECE Driving Cycle
In the present study, the aim is to optimize full and half toroidal continuously variable transmission (CVT) in order to minimize the vehicle fuel consumption (FC) in ECE driving cycle. First, the model of both CVTs’ efficiency is presented. The control strategy of CVTs speed ratio based on minimizing the vehicle FC is introduced, and the algorithm of calculating the vehicle FC is shown. Afterw...
متن کاملNumerical method for a system of second order singularly perturbed turning point problems
In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...
متن کاملToroidalization of locally toroidal morphisms of 3-folds
A toroidalization of a dominant morphism $varphi: Xto Y$ of algebraic varieties over a field of characteristic zero is a toroidal lifting of $varphi$ obtained by performing sequences of blow ups of nonsingular subvarieties above $X$ and $Y$. We give a proof of toroidalization of locally toroidal morphisms of 3-folds.
متن کامل